DIFFERENTIATION

In all practical situations we come across a number of variables. The variable is one which takes different values, whereas a constant takes a fixed value.

Let x be the independent variable. That means x can take any value. Let y be a variable depending on the value of x. Then y is called the dependent variable. Then y is said to be a function of x and it is denoted by $y=f(x)$

For example if x denotes the time and y denotes the plant growth, then we know that the plant growth depends upon time. In that case, the function $y=f(x)$ represents the growth function. The rate of change of y with respect to x is denoted by $\frac{d y}{d x}$ and called as the derivative of function y with respect to x.

S.No.	Form of Functions	$y=f(x)$	$\frac{d y}{d x}$
1.	Power Formula	x^{n}	$\frac{d\left(x^{n}\right)}{d x}=n x^{n-1}$
2.	Constant	C	0
3.	Constant with variable	Cy	$C \frac{d y}{d x}$
4.	Exponential	e^{x}	e^{x}
5.	Constant power x	a^{x}	$\mathrm{a}^{\mathrm{x}} \log \mathrm{a}$
6.	Logirthamic	$\log x$	$\frac{1}{x}$
7.	Differentiation of a sum	$y=u+v$ where u and v are functions of x.	$\frac{d y}{d x}=\frac{d}{d x}(u+v)=\frac{d u}{d x}+\frac{d v}{d x}$
8.	Differentiation of a difference	$y=u-v$ where u and v are functions of x.	$\frac{d y}{d x}=\frac{d}{d x}(u-v)=\frac{d u}{d x}-\frac{d v}{d x}$
9.	Product rule of differentiation	$y=u v,$ where u and v are functions of x.	$\frac{d y}{d x}=\frac{d}{d x}(u v)=u \frac{d v}{d x}+v \frac{d u}{d x}$
10.	Quotient rule of differentiation	$\mathrm{y}=\frac{u}{v}$,	$\frac{d y}{d x}=\frac{d}{d x}\left(\frac{u}{v}\right)=\frac{v u^{\prime}-u v^{\prime}}{v^{2}}$

| | where u and v are
 functions of x. | where $u^{\prime}=\frac{d u}{d x}, v^{\prime}=\frac{d v}{d x}$ |
| :--- | :--- | :--- | :--- |

Example

1. Differentiate each of the following function $f(x)=15 x^{100}-3 x^{12}+5 x-46$

Solution

$$
\begin{aligned}
f^{\prime}(x) & =15(100) x^{9}-3(12) x^{11}+5(1) x^{0}-0 \\
& =1500 x^{9}-36 x^{11}+5
\end{aligned}
$$

2. Differentiate following function $g(t)=2 t^{6}+7 t^{-6}$

Solution

Here is the derivative.

$$
\begin{aligned}
g^{\prime}(t) & =2(6) t^{5}+7(-6) t^{-7} \\
& =12 t^{5}-42 t^{-7}
\end{aligned}
$$

3. Differentiate following function $y=8 z^{3}-\frac{1}{3 z^{5}}+z-23$

Solution

$$
y=8 z^{3}-\frac{1}{3} z^{-5}+z-23
$$

diff. w.r.to x

$$
y^{\prime}=24 z^{2}+\frac{5}{3} z^{-6}+1
$$

4. Differentiate the following functions.
a) $y=\sqrt[3]{x^{2}}\left(2 x-x^{2}\right)$

Solution

$$
\begin{aligned}
& y=\sqrt[3]{x^{2}}\left(2 x-x^{2}\right) \\
& y=x^{\frac{2}{3}}\left(2 x-x^{2}\right)
\end{aligned}
$$

diff y w. r. to $x y^{\prime}=\frac{2}{3} x^{-\frac{1}{3}}\left(2 x-x^{2}\right)+x^{\frac{2}{3}}(2-2 x)$
5. Differentiate the following functions. $f(x)=\left(6 x^{3}-x\right)(10-20 x)$

$$
f(x)=\left(6 x^{3}-x\right)(10-20 x)
$$

diff $f(x) w r$ to x

$$
\begin{aligned}
f^{\prime}(x) & =\left(18 x^{2}-1\right)(10-20 x)+\left(6 x^{3}-x\right)(-20) \\
& =-480 x^{3}+180 x^{2}+40 x-10
\end{aligned}
$$

Derivatives of the six trigonometric functions

$\frac{d}{d x}(\sin (x))=\cos (x)$
$\frac{d}{d x}(\cos (x))=-\sin (x)$
$\frac{d}{d x}(\tan (x))=\sec ^{2}(x)$ $\frac{d}{d x}(\cot (x))=-\csc ^{2}(x)$
$\frac{d}{d x}(\sec (x))=\sec (x) \tan (x) \quad \frac{d}{d x}(\csc (x))=-\csc (x) \cot (x)$

Example

1. Differentiate each of the following functions.

$$
g(x)=3 \sec (x)-10 \cos (x)
$$

Solution We'll just differentiate each term using the formulas from above.

$$
\begin{aligned}
g^{\prime}(x) & =3 \sec (x) \tan (x)-10(-\sin (x)) \\
& =3 \sec (x) \tan (x)+10 \sin (x)
\end{aligned}
$$

2. Differentiate each of the following functions $y=5 \sin (x) \cot (x)+4 \csc (x)$ Here's the derivative of this function.

$$
\begin{aligned}
y^{\prime} & =5 \cos (x) \cot (x)+5 \sin (x)\left(-\csc ^{2}(x)\right)-4 \csc (x) \cot (x) \\
& =5 \cos (x) \cot (x)-5 \csc (x)-4 \csc (x) \cot (x)
\end{aligned}
$$

Note that in the simplification step we took advantage of the fact that

$$
\csc (x)=\frac{1}{\sin (x)}
$$

to simplify the second term a little.
3. Differentiate each of the following functions $P(t)=\frac{\sin (t)}{3-2 \cos (t)}$ In this part we'll need to use the quotient rule.

$$
\begin{aligned}
P^{\prime}(t) & =\frac{\cos (t)(3-2 \cos (t))-\sin (t)(2 \sin (t))}{(3-2 \cos (t))^{2}} \\
& =\frac{3 \cos (t)-2 \cos ^{2}(t)-2 \sin ^{2}(t)}{(3-2 \cos (t))^{2}}
\end{aligned}
$$

